Abstract

In evolutionary algorithms, much time is spent evaluating inferior phenotypes that produce no offspring. A common heuristic to address this inefficiency is to stop evaluations early if they hold little promise of attaining high fitness. However, the form of this heuristic is typically dependent on the fitness function used, and there is a danger of prematurely stopping evaluation of a phenotype that may have recovered in the remainder of the evaluation period. Here a stopping method is introduced that gradually reduces fitness over the phenotype's evaluation, rather than accumulating fitness. This method is independent of the fitness function used, only stops those phenotypes that are guaranteed to become inferior to the current offspring-producing phenotypes, and realizes significant time savings across several evolutionary robotics tasks. It was found that for many tasks, time complexity was reduced from polynomial to sublinear time, and time savings increased with the number of training instances used to evaluate a phenotype as well as with task difficulty.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.