Abstract

The distribution of innervation zones was investigated in 3 subjects for 17 muscles and 8 muscle groups in the upper and lower limb, by detecting bi-directional propagation of motor unit action potentials (MUAPs) with the multichannel surface electrode array. Clarification of the distribution of innervation zones depended on the ease in detecting the propagation of MUAPs and the actual scattering of innervation zones, which were closely related with muscle morphology with respect to the arrangements of muscle fibers. In muscles having fibers running parallel to each other, such as the biceps brachii, intrinsic hand muscles, vastus lateralis and medialis, tensor fasciae latae, peronei, soleus, tibialis anterior, and hypothenar muscles in the foot, it was relatively easy to detect the propagating MUAPs, and the innervation zones were distributed in a relatively narrow band around muscle belly. On the other hand, in muscles with a complicated structure including pinnation of muscle fibers, in-series muscle fibers and aponeurotic tissues, such as the deltoid, flexors and extensors in the forearm, rectus femoris, sartorius, hamstrings and gastrocnemius, it was more difficult to detect the propagating MUAPs and to identify the innervation zones, which were widely scattered or distributed in complex configurations. The distribution of the innervation zones clarified in the present study can be used to find the optimal location of electrodes in surface EMG recordings and of stimulus electrodes in the functional and therapeutic electrical stimulations. It may also be useful in motor point biopsy for diagnosis of neuromuscular diseases as well as in the botulinum toxin injection for the treatment of spasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call