Abstract

The Rostral ventral medulla has been shown to consist of three distinct subrogions: the midline or raphéregion, the lateral paragigantocellular-gigantocellular region and the rostro-ventrolateral reticular nucleus. All three regions have been shown to contribute to central vaso-regulation and to project towards sympathetic preganglionic neurons of the thoracic spinal cord. Therefore it is of particular interest to describe the interconnections between the three regions and to see if local afferents reach cells which have been implicated in the regulation of descending inputs. Following injections of the anterograde tract tracer Phaseolus vulgaris leucoagglutinin into the lateral paragigantocellular nucleus or the rostroventrolateral reticular nucleus, labelled axons were traced into the medullary raphénuclei and the contralateral rostral ventrolateral medulla. Efferents originating from both regions innervated the raphépallidus, raphéobscurus and raphémagnus. However the distribution of terminals originating from the two regions was different in the contralateral ventrolateral medulla oblongata. The data indicate that the connection between the ipsi- and contralateral equivalents of both the lateral paragigantocellular-gigantocellular region and the rostroventrolateral reticular nucleus are stronger than the cross-connection between the ipsi- and contralateral parts of the two different regions. In the second part of the study, the existence of direct projections from the rostroventrolateral reticular nucleus and the lateral paragigantocellular-gigantocellular region onto serotonin-immunogold-labelled cells of the ventromedial medulla were investigated. The correlated light and electron microscopic analysis revealed direct synaptic contacts between axons originating from both the lateral paragigantocellular-gigantocellular region and the rostroventrolateral reticular nucleus, and serotonin-immunoreactive cells of the raphéobscurus and raphépallidus. The results of the present light microscopic tract-tracing study revealed a different pattern of the intramedullary projection of the lateral paragigantocellular-gigantocellular region and the rostroventrolateral reticular nucleus. These data are in support of the proposed parcellation of the two cytoarchitectonically different areas of the rostral ventrolateral medulla into two functionally distinct subdivisions. Furthermore, the direct anatomical connection revealed in the present study between cells of the rostral ventrolateral and ventromedial medulla oblongata indicates the possibility that vasoregulatory effects of some cells of the rostral ventrolateral medulla oblongata might be executed via direct projections onto serotonin-immunoreactive cells of the medullary raphénuclei.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call