Abstract
This article demonstrates the stabilization of ground- and redox-induced metal-to-ligand charge transfer excited states on coordination of azo-coupled bmpd(L4) [bmpd = (E)-1,2-bis(1-methyl-1H-pyrazol-3-yl)diazene; L4 = -N═N-] to the electron-rich {Ru(acac)2} (acac = acetylacetonate) unit in mononuclear RuII(acac)2(L4) (1) and diastereomeric dinuclear (acac)2Ru2.5(μ-L4•-)Ru2.5(acac)2 [rac, ΔΔ/ΛΛ (2a)/meso, ΔΛ (2b)] complexes, respectively. It also develops further one-step intramolecular electron transfer induced L4•- bridged isovalent higher analogue [(acac)2RuIII(μ-L4•-)RuIII(acac)2]ClO4 in diastereomeric forms, rac-[2a]ClO4/meso-[2b]ClO4. On the contrary, under identical reaction conditions electronically and sterically permuted bimpd [L5, (E)-1,2-bis(4-iodo-1-methyl-1H-pyrazol-3-yl)diazene)] delivered mononuclear RuII(acac)2(L5) (3) as an exclusive product. Further, the generation of unprecedented heterotrinuclear complex [(acac)2RuII(μ-L4)AgI(μ-L4)RuII(acac)2]ClO4 ([4]ClO4) involving unreduced L4 via the reaction of 1 and AgClO4 revealed the absence of any inner-sphere electron transfer (IET) as in precursor 1, which in turn reaffirmed an IET (at the interface of electron-rich Ru(acac)2 and acceptor L4) mediated stabilization of 2. Structural authentication of the complexes with special reference to the tunable azo distance (N═N, N-N•-, N-N2-) of L and their spectro-electrochemical events in accessible redox states including the reversible electron reservoir feature of 2 → 2+/2+ → 2 were evaluated in conjunction with density functional theory/time-dependent density functional theory calculations. The varying extent of IET as a function of heteroaromatics appended to the azo group of L (L1 = abpy = 2,2'-azobipyridine, L2 = abbt = 2,2'-azobis(benzothiazole), L3 = abim = azobis(1-methylbenzimidazole), L4 and L5, Schemes 1 & 2) in the Ru(acac)2-derived respective molecular setup has been addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.