Abstract
The inner radius of univalence of a domain D with Poincare density ρD is the possible largest number σ such that the condition ∥ Sf ∥D = supw∈ D ρD (w)−2∥ Sf (z) ∥ ≤ σ implies univalence of f for a nonconstant meromorphic function f on D, where Sf is the Schwarzian derivative of f. In this note, we give a lower bound of the inner radius of univalence for strongly starlike domains of order α in terms of the order α.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.