Abstract

Let C be the complex Levi-Civita field and let c0(C) or, simply, c0 denote the space of all null sequences z=(zn)n∈N of elements of C. The natural inner product on c0 induces the sup-norm of c0. In a previous paper Aguayo et al. (2013), we presented characterizations of normal projections, adjoint operators and compact operators on c0. In this paper, we work on some B∗-algebras of operators, including those mentioned above; then we define an inner product on such algebras and prove that this inner product induces the usual norm of operators. We finish the paper with a characterization of closed subspaces of the B∗-algebra of all adjoint and compact operators on c0 which admit normal complements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.