Abstract

The nuclear envelope comprises the outer nuclear membrane, inner nuclear membrane (INM), and nucleopore. Although ∼60 INM proteins have been identified, only a few of them have been well characterized, revealing their crucial roles. Our group focused on the INM protein transmembrane protein 201 (TMEM201), whose role in cellular function remains to be defined. In this study, we investigated the role of TMEM201 in endothelial cell migration and angiogenesis. Depletion of TMEM201 expression by short hairpin RNA-mediated interference impeded human umbilical vein endothelial cell (HUVEC) angiogenic behavior in tube formation and fibrin gel bead sprouting assays. Meanwhile, TMEM201-deficient HUVECs exhibited impaired migration ability. We next explored the underlying mechanism and found that the N-terminal of TMEM201 interacted with the linker of nucleoskeleton and cytoskeleton complex and was required for regulating endothelial cell migration and angiogenesis. These in vitro findings were further confirmed by using in vivo models. In Tmem201-knockout mice, retinal vessel development was arrested and aortic ring sprouting was defective. In addition, loss of tmem201 impaired zebrafish intersegmental vessel development. In summary, TMEM201 was shown to regulate endothelial cell migration and control the process of angiogenesis. This study is the first to reveal the role of INM proteins in the vascular system and angiogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.