Abstract
Mitochondria are known as dynamic organelles that fuse and divide under the control of certain proteins. These dynamics are important to shape mitochondria, maintain a healthy mitochondrial population, and enable physiological adaptations, to name just a few key processes. We are less aware that mitochondrial membrane lipids and proteins also exhibit dynamics in terms of lateral mobility and translocation. This single molecule dynamics is equally important for the above processes as it enables interaction with other proteins and complexes. Here we discuss some mitochondrial proteins and the role of their specific dynamic spatiotemporal organization for function and adaptation. For example, respiratory proteins are preferentially localized in cristae sheets, ATP synthase at the edges of cristae and compounds of the MICOS complex at cristae junctions. Trajectory patterns show how and whether molecules are restricted in their mobility and how this determines their distribution. The formation of supercomplexes has an influence on this. Recent studies have also shown that the distribution of proteins is not absolutely static. For example, the metabolic state of the cell obviously determines the activity of the mitochondria and finally the organization of the bioenergetic and structure-determining proteins inside. The ATP synthase has both classifications and additionally shows functional interactions with other cristae shaping proteins at cristae junctions. To understand the dynamics of mitochondria we have to consider all scales: from the dynamics of the molecular structure of the proteins to the dynamics of the molecules with respect to their localization and lateral mobility to the dynamics of the organelle structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Biochemistry & Cell Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.