Abstract

Time series velocity signals obtained from large-eddy simulations (LES) within the logarithmic region of the zero-pressure gradient turbulent boundary layer over a smooth wall are used in combination with an empirical, predictive inner-outer wall model [I. Marusic, R. Mathis, and N. Hutchins, “Predictive model for wall-bounded turbulent flow,” Science 329, 193 (2010)10.1126/science.1188765] to calculate the statistics of the fluctuating streamwise velocity in the inner region. Results, including spectra and moments up to fourth order, are compared with equivalent predictions using experimental time series, as well as with direct experimental measurements at Reynolds numbers Reτ = 7300, 13 600, and 19 000. The LES combined with the wall model are then used to extend the inner-layer predictions to Reynolds numbers Reτ = 62 000, 100 000, and 200 000 that lie within a gap in log (Reτ) space between laboratory measurements and surface-layer, atmospheric experiments. The present results support a loglike increase in the near-wall peak of the streamwise turbulence intensities with Reτ and also provide a means of extending LES results at large Reynolds numbers to the near-wall region of wall-bounded turbulent flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call