Abstract

Inner ear pressure was measured in scala tympani with a micropipette during square wave pressure manipulation of the intracranial compartment and, subsequently, of the external ear canal (EEC) in the same guinea pig. As expected, the combination of the cochlear aqueduct and the inner ear behaves as a low-pass filtering system for intracranial pressure manipulation and as a complementary high-pass system for ear canal pressure manipulation. Time constants for pressure equalization were in the order of seconds and depended on the direction of flow through the cochlear aqueduct. Pressure equalization curves could not be fitted to a single exponential function; more complicated functions were needed for good fits, showing that the pressure equalization process is nonlinear. This means that the flow resistance of the cochlear aqueduct and/or the compliance of the cochlear windows is not constant, which is in accordance with a flow-direction dependent resistance of the cochlear aqueduct. An explanation for this can be found in the special structure of the periotic duct inside the aqueduct.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.