Abstract

Let [Formula: see text] be an associative ring and [Formula: see text] idempotent elements of [Formula: see text]. In this paper we introduce the notion of [Formula: see text]-invertibility for an element of [Formula: see text] and use it to define inner actions of weak Hopf algebras. Given a weak Hopf algebra [Formula: see text] and an algebra [Formula: see text], we present sufficient conditions for [Formula: see text] to admit an inner action of [Formula: see text]. We also prove that if [Formula: see text] is a left [Formula: see text]-module algebra then [Formula: see text] acts innerly on the smash product [Formula: see text] if and only if [Formula: see text] is a quantum commutative weak Hopf algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.