Abstract
Dendritic cells (DC) are specialized in the presentation of antigens and the initiation of specific immune responses. They have been involved recently in supporting innate immunity by interacting with various innate lymphocytes, such as natural killer (NK), NK T or T cell receptor (TCR)-gammadelta cells. The functional links between innate lymphocytes and DC have been investigated widely and different studies demonstrated that reciprocal activations follow on from NK/DC interactions. The cross-talk between innate cells and DC which leads to innate lymphocyte activation and DC maturation was found to be multi-directional, involving not only cell-cell contacts but also soluble factors. The final outcome of these cellular interactions may have a dramatic impact on the quality and strength of the down-stream immune responses, mainly in the context of early responses to tumour cells and infectious agents. Interestingly, DC, NK and TCR-gammadelta cells also share similar functions, such as antigen uptake and presentation, as well as cytotoxic and tumoricidal activity. In addition, NK and NK T cells have the ability to kill DC. This review will focus upon the different aspects of the cross-talk between DC and innate lymphocytes and its key role in all the steps of the immune response. These cellular interactions may be particularly critical in situations where immune surveillance requires efficient early innate responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Clinical and Experimental Immunology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.