Abstract

The intestinal epithelium encounters a unique environment consisting of microbes, both commensals and pathogens, as well as dietary nutrients and antigens. This complex composition necessitates the presence of a dynamic system of defense to contain both pathogenic and commensal bacteria within the lumen yet allow for nutrient absorption. Tight junctions provide protection of the intercellular spaces while other surface molecules, such as intestinal trefoil factor, help to maintain the structural integrity of the epithelium. Other more active processes, including upregulated expression and activation of antimicrobial peptides and enhanced fluid secretion, provide a second level of innate defense. Despite providing the interface between an exuberant immune system and a highly antigenic lumenal environment, the intestinal epithelium must remain quiescent. As such, several novel antiinflammatory mechanisms were recently identified. Studies that elaborate the various aspects of these pathways are discussed in this review.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call