Abstract
Intestinal and systemic dendritic cell (DC) frequencies, serum and small intestinal content cytokines and uptake/binding of human rotavirus (HRV) virus-like particles (VLP) were studied in HRV acutely infected or mock-inoculated neonatal gnotobiotic piglets. Intestinal, mesenteric lymph node (MLN) and splenic plasmacytoid DCs (pDCs), conventional DCs (cDCs) and macrophages/monocytes were assessed by flow cytometry. In infected pigs, serum and small intestinal content interferon-α (IFN-α) were highest, interleukin-12 (IL-12) was lower and IL-10, tumour necrosis factor-α and IL-6 were minimal. Compared with mock-inoculated piglets, frequencies of total intestinal DCs were higher; splenic and MLN DC frequencies were lower. Most intestinal pDCs, but few cDCs, were IFN-α(+) and intestinal macrophages/monocytes were negative for IFN-α. Serum IFN-α levels and IFN-α(+) intestinal pDCs were highly correlated, suggesting IFN-α production in vivo by intestinal pDCs (r=0·8; P<0·01). The intestinal pDCs and cDCs, but not intestinal macrophages/monocytes, of HRV-infected piglets showed significantly lower VLP uptake/binding compared with mock-inoculated piglets, suggesting higher activation of pDCs and cDCs in infected piglets. Both intestinal pDCs and cDCs were activated (IFN-α(+) and lower VLP binding) after HRV infection, suggesting their role in induction of HRV-specific immunity. Dose-effects of HRV on serum IFN-α and IFN-α(+) DCs were studied by infecting piglets with 100-fold higher HRV dose. A high dose increased parameters associated with inflammation (diarrhoea, intestinal pathology) but serum IFN-α and IFN-α(+) DCs were similar between both groups. The pDCs have both anti- and pro-inflammatory functions. Stimulation of the anti-inflammatory effects of pDCs after the high dose, without increasing their pro-inflammatory impacts, may be critical to reduce further immunopathology during HRV infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.