Abstract

The recent pandemic of a novel H1N1 influenza virus has stressed the importance of effective approaches to prevent viral infection. The innate immune system is our first line of defense against invading viruses. This review aims to give a brief summary of recent findings on the response of the innate immune system to influenza virus. Three families of pattern recognition receptors, toll-like receptors (TLRs), retinoic acid-inducible gene 1 protein like helicases (RLRs) and nucleotide-binding domain and leucine-rich-repeat-containing proteins (NLRs), are involved in recognition of influenza virus and they cooperatively operate to respond to the virus in cell culture or mouse models. Influenza virus mainly induces two types of innate immune cytokine responses: a proinflammatory response and an antiviral response. Recently, the NLRP3 inflammasome has proved to be an essential component in the host defense against influenza infection. The mitochondrion, traditionally recognized for its key role in respiration, metabolism and apoptosis, is becoming recognized as an important organelle for regulation of innate immune responses to influenza virus. The NLRP3 inflammasome is an essential component in the host defense against influenza infection. Further investigations are required to elucidate whether NLRP3 is associated with the adaptive response and to identify the components of influenza virus that activate this important mediator. The role of mitochondria as a potential central platform of innate response is becoming appreciated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.