Abstract

Ionizing radiation-induced DNA damages cause genome instability and are highly cytotoxic. Deoxyribonucleotide metabolism provides building blocks for DNA repair. Nevertheless, how deoxyribonucleotide metabolism is timely regulated to coordinate with DNA repair remains elusive. Here, we show that ionizing radiation results in TBK1-mediated phosphorylation of phosphoribosyl pyrophosphate synthetase (PRPS)1/2 at T228, thereby enhancing PRPS1/2 catalytic activity and promoting deoxyribonucleotide synthesis. DNA damage-elicited activation of cGAS/STING axis and ATM-mediated PRPS1/2 S16 phosphorylation are required for PRPS1/2 T228 phosphorylation under ionizing radiation. Furthermore, T228 phosphorylation overrides allosteric regulator-mediated effects and preserves PRPS1/2 with high activity. The expression of non-phosphorylatable PRPS1/2 mutants or inhibition of cGAS/STING axis counteracts ionizing radiation-induced PRPS1/2 activation, deoxyribonucleotide synthesis, and DNA repair, and further impairs cell viability. This study highlights a novel and important mechanism underlying an innate immune response-guided deoxyribonucleotide metabolism, which supports DNA repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call