Abstract

Reliable mesh-based simulations are needed to solve complex engineering problems. Mesh adaptivity can increase reliability by reducing discretization errors, but requires multiple software components to exchange information. Often, components exchange information by reading and writing a common file format. This file-based approach becomes a problem on massively parallel computers where filesystem bandwidth is a critical performance bottleneck. Our data stream and component interface approaches avoid the filesystem bottleneck. In this paper we present our approaches and their use within the PHASTA computational fluid dynamics solver and Albany multiphysics framework. Information exchange performance results are reported on up to 2048 cores of a BlueGene/Q system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.