Abstract

This paper presents a machine-learning classifier where computations are performed in a standard 6T SRAM array, which stores the machine-learning model. Peripheral circuits implement mixed-signal weak classifiers via columns of the SRAM, and a training algorithm enables a strong classifier through boosting and also overcomes circuit nonidealities, by combining multiple columns. A prototype 128 $\times $ 128 SRAM array, implemented in a 130-nm CMOS process, demonstrates ten-way classification of MNIST images (using image-pixel features downsampled from 28 $\times $ 28 = 784 to 9 $\times $ 9 = 81, which yields a baseline accuracy of 90%). In SRAM mode (bit-cell read/write), the prototype operates up to 300 MHz, and in classify mode, it operates at 50 MHz, generating a classification every cycle. With accuracy equivalent to a discrete SRAM/digital-MAC system, the system achieves ten-way classification at an energy of 630 pJ per decision, 113 times lower than a discrete system with standard training algorithm and 13 times lower than a discrete system with the proposed training algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.