Abstract
Densely integrated photonic integrated circuits (PICs) require efficient solutions for monitoring the light intensity on chip in order to implement control and configuration operations to set and stabilize the working point of the circuit. To this end, waveguides supporting the propagation of surface plasmon polaritons (SPPs) are good candidates to realize small-footprint light detectors. In this work, we report on the realization of an in-line Surface Plasmon Detector (SPD) that exploits the photothermal effect to monitor the optical power in a titanium dioxide (TiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) optical waveguide. Detailed design guidelines are provided to maximize the responsivity of the SPD, taking into account the effects of the metal geometry on the coupling between the dielectric and plasmonic modes, the power dissipated in the metal, and the equivalent thermal resistance of the structure. Experimental validation of the proposed device is provided demonstrating an ultra-compact 1.6-μm-long SPD operating at a wavelength of 1550 nm with a sensitivity of – 20 dBm and a bandwidth higher than 100 kHz. The proposed device concept can be ported to generic dielectric platforms and to other wavelength ranges where SPP propagation is supported.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.