Abstract

We propose and demonstrate an inline fiber optic power sensor (IFPS) resorting to an embedded waveguide tap, which is formed to traverse across the cladding and core of a standard single-mode fiber. The tap was produced via a single-step inscription based on the femtosecond laser direct-writing method. A tightly focused pulsed laser beam has been particularly exploited to suppress the elongation along the laser propagation direction, thereby improving the cross-sectional symmetry of the created tap waveguide. The fabricated fiber optic tap has been stably combined with a photodiode via a compact package. The achieved tap ratio could be tuned from 1.0% to 5.9% at the wavelength of 1550 nm by adjusting the applied laser power, while the induced excess loss was kept below 0.6 dB. The proposed IFPS will be highly suitable for real-time power monitoring in a variety of applications, including optical communication networks and systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call