Abstract
Abstract This paper presents first-of-a-kind measurements, and complementary computations, of the flow through the propulsion system of a boundary layer ingesting, twin-engine advanced civil transport aircraft configuration. The experiments were carried out in the NASA Langley 14- by 22-foot Subsonic Tunnel, using a 1:11 scale model of the D8 “double-bubble” aircraft with electric ducted fans providing propulsive power. Overall force and moment measurements and flow field surveys at the inlet and nozzle exit planes were obtained. The computations were carried out with the NASA OVERFLOW code. The measurements and computations were conducted for a range of aircraft angles of attack and propulsor powers representing operating points during the aircraft mission. Velocity and pressure distributions at the propulsor inlet and exit, and integral inlet distortion metrics, are presented to quantify the flow non-uniformity due to boundary layer ingestion. The distorted inflow exhibits qualitative and quantitative changes over the mission, from a unidirectional stratified stagnation pressure at cruise to a streamwise vortex structure at climb conditions. The computations capture these flow features and reveal the interactions between airframe and propulsor that create these three-dimensional flow variations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.