Abstract

Two-dimensional (2D) transition-metal dichalcogenides (TMDs) are prospective materials for quantum devices owing to their inherent 2D confinements. They also provide a platform to realize even lower-dimensional in-plane electron confinement, for example, 0D quantum dots, for exotic physical properties. However, fabrication of such laterally confined monolayer (1L) nanostructure in 1L crystals remains challenging. Here we report the realization of 1L ReS2 quantum dots epitaxially inlaid in 1L MoS2 by a two-step chemical vapor deposition method combining with plasma treatment. The lateral lattice mismatch between ReS2 and MoS2 leads to size-dependent crystal structure evolution and in-plane straining of the 1L ReS2 quantum dots. Optical spectroscopies reveal the abnormal charge transfer between the 1L ReS2 quantum dots and the MoS2 matrix, resulting from electron trapping in the 1L ReS2 quantum dots. This study may shed light on the development of in-plane quantum-confined devices in 2D materials for potential applications in quantum information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.