Abstract

Over the last 30 years inkjet printing technology has been developed for many applications including: product date codes, mailing shots, desktop printing, large-area graphics and, most recently, the direct writing of materials to form electronic, biological, polymeric and metallic devices. The new non-graphical applications require higher print rates, better resolution and higher reliability while printing more complex, non-Newtonian and heavily solids-loaded liquids. This makes the understanding of the physics involved in the precise manipulation of liquid jets and drops ever more important. The proper understanding and control of jet formation and subsequent motion of the jetted materials requires physical studies into material properties at very high shear rates, acoustic modes in print heads, instabilities of jets, drop formation, drop motion, stretching of fluid ligaments, the role of polymers in jet break up, electrical charging of drops and the aerodynamic and electrostatic interaction of jets and drops in flight. Techniques for observation, measurement and analysis are evolving to assist these studies. This paper presents some examples of the application of physics to understanding and implementing inkjet printing, including recent work at the Cambridge Inkjet Research Centre.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call