Abstract
Herein, a YAG/10 at% Yb:YAG/YAG transparent ceramic planar waveguide (PWG) gain medium has been molded via inkjet printing and dry pressing molding. The composition and rheological property of ink are optimized along with the printing process to enhance the printing accuracy and quality. The PWG has dimensions of 13.5 × 8.0 × 1.8 mm3, while the thickness of the core Yb:YAG layer is ≈190 μm. The in‐line transmittance of the PWG reaches 81.7% at 1030 nm, and the average grain size is ≈2.3 μm. The diffusion characteristics of Yb ions across the interface between the cladding YAG layer and the core Yb:YAG layer are investigated by calculating the diffusion coefficient and the mean diffusion distance of 172Yb ions. The Yb:YAG PWG oscillator, which is pumped from a single end by a 940 nm laser diode, produces continuous wave laser at a wavelength of 1030 nm and exhibits the highest power (3.8 W) and highest absorbed–output slope efficiency (64.6%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Advanced Photonics Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.