Abstract

Inverted organic solar cells, which utilize a transparent cathode and a high work function metal anode, have been the subject of extensive research. Their advantages over conventional organic solar cells include increased resistance to environmental degradation and compatibility with large area fabrication techniques. Carrier transport layers are essential for achieving high power conversion efficiencies in inverted organic solar cells and therefore need to be compatible with these large area fabrication techniques. Inkjet printing is one such technique that can be integrated into the low cost mass production of these cells via roll to roll fabrication. N-type metal oxides such as ZnO or zinc tin oxide (ZTO) have been previously used as electron transport layers for inverted cells, but only as spin coated films. We have developed inkjet printable ZTO solutions for use as electron transport layers in inverted organic solar cells, and achieve power conversion efficiencies of over 3% in inverted P3HT:PC 71 BM solar cells. We also discuss the effect of printing parameters on the electrical performance of these layers in inverted organic solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call