Abstract
ABSTRACTGraphene is a strong contender as a material to replace indium tin oxide as the transparent conductor of choice for electronic applications due to its exceptional electrical and optical properties. In this work, we present a study of graphene oxide (GO) films produced by inkjet-printing. The printed GO films are reduced using hydriodic acid (HI) and acetic acid vapour at low temperature. The reduced GO (rGO) films displayed good optical and electrical properties with a sheet resistance 6.8 kΩ/□ at a transmittance of 80%. In addition, we show that the conductivity of rGO films is related to both the size of individual GO sheets in the ink and the thickness of printed films. The rGO films using large size GO sheets displayed a thickness-independent conductivity of ∼ 4 × 104S/m, while the rGO films using small size GO sheets showed a thickness-independent conductivity of ∼ 1.7 × 104S/m. These properties are comparable to graphene films produced by solvent exfoliation. In summary, we demonstrate a scalable and potentially low-cost technique to produce rGO transparent films and a route to improve the conductivity of rGO films by controlling size of GO sheets in the ink.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.