Abstract
AbstractSurface modification involves developing a versatile thin film by combining the physical, chemical, or biological characteristics of the functional materials and can facilitate controlling material for desirable aims. Layer‐by‐layer (LbL) assembly can be used to create materials with controlled thicknesses and morphologies, diverse functionalities, and unique structures on any surface. However, despite the advantages of the LbL fabrication technique, there are limits to its application because it is a time‐consuming process and has difficulty controlling the shape of nanofilms. In addition, controlling the lateral organization is difficult because the preparation methods are based on one‐pot self‐assembly. In this study, a multilayered fabrication system is developed for the high‐throughput LbL assembly of nanofilms through inkjet printing. With various types of materials from synthetic polymer to graphene oxide to natural polymer and protein, the approach can tune the preparation of nanoscale multilayers with desired structures and shapes for specific applications on various substrates, including a silicon wafer, quartz glass, and cellulose‐based paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.