Abstract

We report an efficient inkjet printing of water-based pristine GNPs graphene ink and a facile aqueous halogen doping process that provides significant and thermally stable conductivity enhancement of printed patterns. Highly concentrated aqueous graphene ink populated by few-layer pristine graphene flakes is obtained by means of scalable shear exfoliation process with the aid of bromine intercalation. The as-printed GNP films which has been merely treated by drying at 100 °C exhibits DC conductivity (σDC) of ∼1400 S/m likely due to bromine doping effect. This value is significantly increased to ∼3 × 104 S/m when an additional treatment by means of dipping in aqueous iodine solution is applied prior to the drying. As contrast, σDC is increased to ∼2.4 × 104 S/m when a mere annealing at elevated temperature in air is employed. When the aqueous iodine doping process and annealing at elevated temperature is combined, an unprecedented value of σDC ∼105 S/m is achieved. The availability of water-based GNPs inks and low-temperature doping scheme for efficient and reliable conductivity enhancement has offered a pathway for the application of GNPs in different printed electronics devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call