Abstract

All inkjet‐printed thermal sensors are manufactured based on a metal–insulator–metal (MIM) interface or capacitor architecture, for the adapted device size ranging from 16 to 36 mm2 active area. Two different material inks, namely a nanoparticle conductive silver ink and an inorganic‐polymer‐based hybrid insulator ink, are applied layer by layer on a thin flexible polyimide substrate, for developing the printed MIM devices. To ensure the desired electronic conductivity and insulation from the layers, the manufacturing process steps and parameters are tuned, accordingly. The results show that the inkjet‐printed MIM devices could constitute up to 15 μm thickness and demonstrate average detection of a change in electrical capacitance ranging from 20 to 100 pF, when the temperature is varied between 100 and 300 °C. The investigations also summarize that the change in the electrical response is enough to detect an increment of 50 °C. The printed sensors also display high operational stability and repeatability, when subjected to thermal cycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call