Abstract

We report highly reproducible gravimetric and optical measurements of microdroplets that lend insights into the fundamentals of drop-on-demand (DOD) printing. Baseline fluidic pressure within the DOD dispenser was controlled to within 0.02 hPa, enabling long-term stability in dispensed droplet mass with observed variations near 1% (RSD) for isobutanol. The gravimetric measurements were sensitive enough to detect and avoid unwanted effects from air bubbles within the dispenser. The gravimetric and optical velocity measurements enabled consistent determination of droplet kinetic energy that governed baseline behavior across the operational variables. Mass and velocity were influenced in a nonlinear manner by the frequency of droplet ejection, the fluidic pressure within the dispensing device, and the number of droplets dispensed in a burst. Resolved effects were attributable to several possible mechanisms including acoustic resonances, energy partitioning from systematic orifice refill dynamics, pressure wavelets created within the dispenser cavity during "first-drop" formation, and residual ring-down after last-drop emergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.