Abstract

Concept of modular microfluidics combined with fabrication of the modules by 3D printing is an alternative to traditional monolithic form of the chips and microfabrication techniques of microfluidic circuits. Here we propose the modular configuration of the chip for gel electrophoresis of genetic material. The microfludic device is assembled from discrete inkjet 3D printed modules dedicated to a specific function of the chip (i.e. sample introduction/injection, separation and optical detection). Thus, theoretically the separation microchannel could be extended to an almost unlimited length. Moreover, thanks to the modularity of the separation chip, it is possible to transfer a brick with a sample between different configurations of the microfluidic circuits to perform another analysis of the sample. Proof-of-principle tests of the modular configuration and sample transfer were carried out with DNA ladder samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call