Abstract

An oxygen-resistant refractory high-entropy alloy is synthesized in microlattice or bulk formby 3D ink-extrusion printing, interdiffusion, and silicide coating. Additive manufacturing of equiatomic HfNbTaTiZr is implemented by extruding inks containing hydride powders, de-binding under H2, and sintering under vacuum. The sequential decomposition of hydride powders (HfH2+NbH+TaH0.5+TiH2+ZrH2) is followed by in situ X-ray diffraction. Upon sintering at 1400°C for 18h, a nearly fully densified, equiatomic HfNbTaTiZr alloy is synthesized; on slow cooling, both α-HCP and β-BCC phases are formed, but on quenching, a metastable single β-BCC phase is obtained. Printed and sintered HfNbTaTiZr alloys with ≈1wt.% O shows excellent mechanical properties at high temperatures. Oxidation resistance is achieved by silicide coating via pack cementation. A small-size lattice-core sandwich is fabricated and tested with high-temperature flames to demonstrate the versatility of this sequential approach (printing, sintering, and siliconizing) for high-temperature, high-stress applications of refractory high-entropy alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call