Abstract

Inhalation of xenon gas improves acute kidney injury (AKI). However, xenon can only be delivered through inhalation, which causes non-specific distribution and low bioavailability of xenon, thus limiting its clinical application. In this study, xenon is loaded into platelet membrane-mimicking hybrid microbubbles (Xe-Pla-MBs). In ischemia-reperfusion-induced AKI, intravenously injected Xe-Pla-MBs adhere to the endothelial injury site in the kidney. Xe-Pla-MBs are then disrupted by ultrasound, and xenon is released to the injured site. This release of xenon reduced ischemia-reperfusion-induced renal fibrosis and improved renal function, which are associated with decreased protein expression of cellular senescence markers p53 and p16, as well as reduced beta-galactosidase in renal tubular epithelial cells. Together, platelet membrane-mimicking hybrid microbubble-delivered xenon to the injred site protects against ischemia-reperfusion-induced AKI, which likely reduces renal senescence. Thus, the delivery of xenon by platelet membrane-mimicking hybrid microbubbles is a potential therapeutic approach for AKI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.