Abstract
Injuries to the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints of the hand are particularly disabling. However, current standards for hand protection from blunt impact are not based on quantitative measures of the likelihood of damage to the tissues. The aim of this study was to evaluate the probability of injury of the MCP and PIP joints of the human hand due to blunt impact.Impact testing was conducted on 21 fresh-frozen cadaveric hands. Unconstrained motion at every joint was allowed. All hands were imaged with computed tomography and dissected post-impact to quantify injury. An injury-risk curve was developed for each joint using a Weibull distribution with dorsal impact force as the predictive variable.The injury risks for PIP joints were similar, as were those for MCP joints. The risk of injury of the MCP joints from a given applied force was significantly greater than that of the PIP joints (p = 0.0006). The axial forces with a 50% injury risk for the MCP and PIP joints were 3.0 and 4.2 kN, respectively.This is the first study to have investigated the injury tolerance of the MCP and PIP joints. The proposed injury curves can be used for assessing the likelihood of tissue damage, for designing targeted protective solutions such as gloves, and for developing more biofidelic standards for assessing these solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.