Abstract

BackgroundHorizontal instability impairs clinical outcome following acute acromioclavicular joint (ACJ) reconstruction and may be caused by insufficient healing of the superior acromioclavicular ligament complex (ACLC). However, characteristics of acute ACLC injuries are poorly understood so far. Purposes of this study were to identify different ACLC tear types, assess type-specific prevalence and determine influencing cofactors.MethodsThis prospective, cross-sectional study comprised 65 patients with acute-traumatic Rockwood-5 (n = 57) and Rockwood-4 (n = 8) injuries treated operatively by means of mini-open ACJ reduction and hook plate stabilization. Mean age at surgery was 38.2 years (range, 19–57 years). Standardized pre- and intraoperative evaluation included assessment of ACLC tear patterns and cofactors related to the articular disc, the deltoid-trapezoidal (DT) fascia and bony ACJ morphology. Articular disc size was quantified as 0 = absent, 1 = remnant, 2 = meniscoid and 3 = complete.ResultsAll patients showed complete ruptures of the superior ACLC, which could be assigned to four different tear patterns. Clavicular-sided (AC-1) tears were observed in 46/65 (70.8 %), oblique (AC-2) tears in 12/65 (18.5 %), midportion (AC-3) tears in 3/65 (4.6 %) and acromial-sided (AC-4) tears in 4/65 (6.1 %) of cases. Articular disc size manifestation was significantly (P < .001) more pronounced in patients with AC-1 tears (1.89 ± 0.57) compared to patients with AC-2 tears (0.67 ± 0.89). Other cofactors did not influence ACLC tear patterns. ACLC dislocation with incarceration caused mechanical impediment to anatomical ACJ reduction in 14/65 (21.5 %) of cases including all Rockwood-4 dislocations. Avulsion “in continuity” was a consistent mode of failure of the DT fascia. Type-specific operative strategies enabled anatomical ACLC repair of all observed tear types.ConclusionsAcute ACLC injuries follow distinct tear patterns. There exist clavicular-sided (AC-1), oblique (AC-2), midportion (AC-3) and acromial-sided (AC-4) tears. Articular disc size was a determinant factor of ACLC tear morphology. Mini-open surgery was required in Rockwood-4 and a relevant proportion of Rockwood-5 dislocations to achieve both anatomical ACLC and ACJ reduction. Type-specific operative repair of acute ACLC tears might promote biological healing and lower rates of horizontal ACJ instability following acute ACJ reconstruction.

Highlights

  • Horizontal instability impairs clinical outcome following acute acromioclavicular joint (ACJ) reconstruction and may be caused by insufficient healing of the superior acromioclavicular ligament complex (ACLC)

  • In operative treatment of acute acromioclavicular joint (ACJ) dislocations, increasing attention is paid to reconstruction of the superior acromioclavicular ligament complex (ACLC) [2, 10, 12, 25, 26]

  • Insufficient superior ACLC healing may contribute to persistent horizontal ACJ instability, which is reported in up to 50 % of cases following both arthroscopic and open reconstruction of acute ACJ dislocations [13, 17, 24, 33]

Read more

Summary

Introduction

Horizontal instability impairs clinical outcome following acute acromioclavicular joint (ACJ) reconstruction and may be caused by insufficient healing of the superior acromioclavicular ligament complex (ACLC). In operative treatment of acute acromioclavicular joint (ACJ) dislocations, increasing attention is paid to reconstruction of the superior acromioclavicular ligament complex (ACLC) [2, 10, 12, 25, 26]. The superior ACLC functions as the major horizontal stabilizer of the ACJ [3, 5, 8, 16]. Definite horizontal ACJ stability will depend on the biomechanical quality of anatomical ACLC healing. Efforts to anatomically repair ACLC injuries might restore horizontal instability in acute ACJ reconstruction [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call