Abstract

Injury initiates a repair process characterized by influx of fibroblasts and the rapid formation of fibrous scar tissue and subsequent tissue contraction. The response to injury and behavior of the different tendon fibroblast populations, however, has been poorly characterized. We hypothesized that the fibroblasts recovered from tendon with acute injury would exhibit different cell properties relating to adhesion, migration and tensegrity. To test this hypothesis we evaluated the ability of fibroblasts recovered from normal and injured equine superficial digital flexor tendons (SDFTs). The injured tendon-derived cells showed greater contraction of the collagen gel but poorer adhesion to pepsin-digested collagen, and migration over extracellular matrix proteins compared to normal SDFT-derived fibroblasts. Thus, the cells present within the tendon after injury display different behavior related to wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.