Abstract
Abstract Objectives Spinal cord damage is one of the traumatic situations in persons that may cause the loss of sensation and proper functioning of the muscles either temporarily or permanently. Hence, steps to assure the recovery through the early functioning and precaution could safe-guard a proper interceptive. To ensure the recovery of spinal cord damage through optimized recurrent neural network. Methods The research on the spinal cord injury classification and level detection is done using the CT images, which is initially given to the segmentation that is done using the adaptive thresholding methodology. Once the segments are formed, the disc is localized using the sparse fuzzy C-means clustering approach. In the next step, the features are extracted from the localized disc and the features include the connectivity features, statistical features, image-level features, grid-level features, Histogram of Oriented Gradients (HOG), and Linear Gradient Pattern (LGP). Then, the injury detection is done based on the Crow search Rider Optimization algorithm-based Deep Convolutional Neural Network (CS-ROA-based DCNN). Once the result regarding the presence of the injury is obtained, the injury-level classification is done based on the proposed Deep Recurrent Neural Network (Deep RNN), and in case of the absence of injury, the process is terminated. Therefore, the injury detection classifier derives the level of the injury, such as normal, wedge, biconcavity, and crush. Results The experimentation is carried out using an Osteoporotic vertebral fractures database. The performance of the injury level detection based on the proposed model is evaluated based on accuracy, sensitivity, and specificity. The proposed model achieves the maximal accuracy of 0.895, maximal sensitivity of 0.871, and the maximal specificity of 0.933 with respect to K-Fold. Conclusions The experimental results show that the proposed model is better than the existing models in terms of accuracy, sensitivity, and specificity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.