Abstract

Motivated by the application to general relativity we study the geometry and regularity of Lorentzian manifolds under natural curvature and volume bounds, and we establish several injectivity radius estimates at a point or on the past null cone of a point. Our estimates are entirely local and geometric, and are formulated via a reference Riemannian metric that we canonically associate with a given observer (p, T) –where p is a point of the manifold and T is a future-oriented time-like unit vector prescribed at p only. The proofs are based on a generalization of arguments from Riemannian geometry. We first establish estimates on the reference Riemannian metric, and then express them in terms of the Lorentzian metric. In the context of general relativity, our estimate on the injectivity radius of an observer should be useful to investigate the regularity of spacetimes satisfying Einstein field equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.