Abstract
Let (M, g) be an analytic, compact, Riemannian manifold with boundary, of dimension n ge 2. We study a class of generalized Radon transforms, integrating over a family of hypersurfaces embedded in M, satisfying the Bolker condition (in: Quinto, Proceedings of conference “Seventy-five Years of Radon Transforms”, Hong Kong, 1994). Using analytic microlocal analysis, we prove a microlocal regularity theorem for generalized Radon transforms on analytic manifolds defined on an analytic family of hypersurfaces. We then show injectivity and stability for an open, dense subset of smooth generalized Radon transforms satisfying the Bolker condition, including the analytic ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.