Abstract

In this paper we prove that under some natural conditions, the Ore extensions and skew Laurent polynomial rings are injectively homogeneous or homologically homogeneous if so are their coefficient rings. Specifically, we prove that ifR is a commutative Noetherian ring of positive characteristic, thenAn (R), thenth Weyl algebra overR, is injectively homogeneous (resp. homologically homogeneous) ifR has finite injective dimension (resp. global dimension).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.