Abstract
We characterize left Noetherian rings in terms of the duality property of injective preenvelopes and flat precovers. For a left and right Noetherian ring R, we prove that the flat dimension of the injective envelope of any (Gorenstein) flat left R-module is at most the flat dimension of the injective envelope of R R. Then we get that the injective envelope of R R is (Gorenstein) flat if and only if the injective envelope of every Gorenstein flat left R-module is (Gorenstein) flat, if and only if the injective envelope of every flat left R-module is (Gorenstein) flat, if and only if the (Gorenstein) flat cover of every injective left R-module is injective, and if and only if the opposite version of one of these conditions is satisfied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.