Abstract
In this article, we give probabilistic versions of Sobolev embeddings on any Riemannian manifold $(M,g)$. More precisely, we prove that for natural probability measures on $L^2(M)$, almost every function belong to all spaces $L^p(M)$, $p<+\infty$. We then give applications to the study of the growth of the $L^p$ norms of spherical harmonics on spheres $\mathbb{S}^d$: we prove (again for natural probability measures) that almost every Hilbert base of $L^2( \mathbb{S}^d)$ made of spherical harmonics has all its elements uniformly bounded in all $L^p(\mathbb{S}^d), p<+\infty$ spaces. We also prove similar results on tori $\mathbb{T}^d$. We give then an application to the study of the decay rate of damped wave equations in a frame-work where the geometric control property on Bardos-Lebeau-Rauch is not satisfied. Assuming that it is violated for a measure $0$ set of trajectories, we prove that there exists almost surely a rate. Finally, we conclude with an application to the study of the $H^1$-supercritical wave equation, for which we prove that for almost all initial data, the weak solutions are strong and unique, locally in time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales scientifiques de l'École normale supérieure
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.