Abstract

Thermoplastic micro- and nanofluidics are increasing in popularity due to their favorable chemical and physical properties as an alternative to poly(dimethyl siloxane) (PDMS)-based devices, which are more widely used in academia. Additionally, their fabrication is compatible with industrial processes, such as hot embossing and injection molding. Nevertheless, producing devices with sub-micrometer channel heights and low roughness while retaining high-throughput molding remains challenging. This article details the combination of grayscale e-beam lithography (g-EBL) and injection molding as a fabrication route for capillary 3D thermoplastic nanofluidic devices with unprecedented accuracy in the sub-micrometer range. We employed g-EBL to pattern the device profile in a poly(methyl methacrylate) (PMMA)-based resist, which served as a substrate for the subsequent fabrication of a negative nickel mold by using electroforming. These molds are used to fabricate devices in PMMA and cyclic olefin polymers (COP) using injection molding. We show that the 3D height profile of the nanofluidic devices is maintained throughout the entire replication cycle within very tight tolerances, retaining its nanoscale topography on a millimeter-length scale. Moreover, somewhat surprisingly, the roughness in the inflow section of the devices was significantly reduced, which we attribute to the nickel mold fabrication. Last, we show that the capillary-driven devices can be used to size-dependently trap nanoparticles of various sizes in a reliable and facile manner while only requiring a 4 μL sample volume. The presented device and fabrication procedure paves the way for applications in various scientific fields, ranging from immunology to neurology and material science, in a cost-effective manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call