Abstract

Injection molding of short fiber reinforced thermoplastic polymer results in a preferential fiber orientation in the part, which leads to an anisotropy in the material mechanical properties. To anticipate the molded part performances, it is necessary to predict the fiber orientation pattern. Our goal is to have a practical tool that accurately predicts fiber orientation patterns, and to use that information to estimate the final product properties. Consequently, an efficient way to determine the flow induced fiber orientation for different flow cases under real injection molding conditions is presented. The proposed approach allows the average orientation angle prediction in a section by considering the close interaction between the fibers and the flow rheology, the fibers aspect ratio and the mold geometry. Finally, to validate the model, experimental data were taken with different matrices, fibers and mold geometries, where good agreements (R2 ≥ 0.8) were obtained for the fiber orientations measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call