Abstract

Poly (lactic acid) (PLA)-poly (butylene succinate) (PBS)-activated carbon (AC) composites were foamed via an injection molding process. Azodicarbonamide (ADC) was used as a chemical blowing agent. The effect of PLA/PBS ratios (0/100, 10/90, 20/80, 30/70, 40/60, 50/50 wt% and vice versa) on the cell formation and properties of composite foams such as cellular structure, foam density (ρf), void fraction (Vf), cell density, melt flow index (MFI), thermal and mechanical properties and crystallinity were investigated. At same ADC and AC loadings (5 phr), PBS acted as nucleating sites for cell generation and expansion at low contents ( 40 wt%). However, the cell size had a tendency to decrease at high PBS concentrations (> 40 wt%). The cell density of composite foams was somewhat constant at PLA/PBS ratios up to 60/40 wt% and then continuously increased as the PBS dosage was higher than 40 wt%. The maximum reduction of foam density with the void fraction of 20% was obtained at the PLA/PBS ratio of 60/40. The melt viscosity of composite foams increased with the increase of PBS loadings. The tensile strength and Young’s modulus of composite foams decreased while the elongation at break and impact strength increased as the proportion of PBS increased. The cold crystallization temperature (Tcc) of PLA in the composite foam tended to decrease with the reduction of PLA contents while the melting temperatures (Tm) of PLA in composite foams fluctuated without any trend compared with those of the unfoamed PLA. The Tcc of PLA in composite foams could not be detected when the content of PBS was higher than 40 wt%. The crystallization temperature (Tc) and Tm of PBS in composite foams was almost unchanged for each PLA/PBS proportion compared with those of the unfoamed PBS. The crystallinity (Xc) of PLA in composite foams increased compared with the unfoamed PLA at PBS contents of 0-20 wt% due to the nucleating effect of PBS and AC. The Xc of PLA (at PBS > 20 wt%) and PBS in composite foams decreased with the reduction of each polymer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call