Abstract
Smart cities are a rapidly growing IoT application. These smart cities mainly rely on wireless sensors to connect their different components (smart devices) together. Smart cities rely on the integration of IoT and 5G technologies, and this has created a demand for a massive IoT network of connected devices. The data traffic coming from indoor wireless networks (e.g., smart homes, smart hospitals, smart factories , or smart school buildings) contributes to over 80% of the total data traffic of the current IoT network. As smart cities and their applications grow, security and privacy challenges have become a major concern for billions of IoT smart devices. One reason for this could be the oversight of handling security issues of IoT devices by their manufacturers, which enables attackers to exploit the vulnerabilities in these devices by performing different types of attacks, e.g., DDoS and injection attacks. Intrusion detection is one way to detect and mitigate the risk of such attacks. In this paper, an intrusion detection method was proposed to detect injection attacks in IoT applications (e.g. smart cities). In this method, two types of feature selection techniques (constant removal and recursive feature elimination) were used and tested by a number of machine learning classifiers (i.e., SVM, Random Forest, and Decision Tree). The T-Test was conducted to evaluate the quality of this proposed feature selection method. Using the public dataset, AWID, the evaluation results showed that the decision tree classifier can be used to detect injection attacks with an accuracy of 99% using only 8 features, which were selected using the proposed feature selection method. Also, the comparison with the most related work showed the advantages of the proposed intrusion detection method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.