Abstract

We demonstrate the efficient injection of a pulsed positron beam into a magnetic dipole trap and investigate the ensuing particle dynamics in the inhomogeneous electric and magnetic fields. Bunches of ∼10^{5}e^{+} were transferred from a buffer-gas trap into the field of a permanent magnet using a lossless E×B drift technique. The Δt≈0.2µs pulses were short compared to the toroidal rotation period, τ_{d}≈16µs, and e^{+} confinement time, τ_{c}≈0.6s. The redistribution dynamics were studied by measuring the delayed γ-ray emission as the trap was emptied. This work extends the record for the number of low-energy positrons held in a dipole trap by two orders of magnitude and represents a significant advance toward the confinement of an electron-positron pair plasma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.