Abstract

We examine the traversal aspect of ultracold two-level atoms through a high-quality two-photon mazer with squeezed vacuum and coherent field distributions. Here the net cavity potential is constituted by the coherent addition of multiple barriers and well potentials, which is quite different from the potential offered by a cavity in the Fock or vacuum state. For squeezed vacuum and coherent field distributions, one gets different phase times ( t p h ) for different modes of the distribution, which are then averaged by taking the weighted mean on the t p h over the n-dependent transmission probability. It is found that the nature, intensity of the field, and injected coherence of the incident atoms have a decisive role in controlling peak values and sub- and superclassical traversals of the tunneling atoms. For two of the system’s dressed states ( | Φ b 0 ⟩ , | Φ b 1 ⟩ ), the cavity offers reflectionless transmission, as the atoms experience zero potential due to the dark state formation. Moreover, for a somewhat intense cavity field, mazer action (scattering-type behavior) may be obtained for an extended range of energies due to increased cavity potential in the course of atom–cavity interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.