Abstract

Towards repairing bone defects, calcium sulfate and calcium phosphate cement have been recognized as promising bone grafts. However, the current bone cements are generally lack of proper porosity for cell migration and new tissue formation. On the other hand, porous scaffold cannot be delivered by injection, which limits its use its clinical use. Herein, we develop a novel tricalcium phosphate/calcium sulfate granule to overcome the limitations of injectable cements and traditional scaffolds. The biocompatible granule underwent in situ self-setting to form scaffold with porous structure after injection. It contributes to calcium deposition and upregulation of osteogenic genes of mesenchymal stem cells in a time-dependent manner. Within three months, cavitary bone defects of distal rabbit femurs implanted the granules exhibited better bone formation than those with those implanted with autologous bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call