Abstract

Here, we fabricated thermosensitive injectable hydrogel containing poly (N-isopropylacrylamide) (PNIPAAm)-based copolymer/graphene oxide (GO) composite with different feed ratio to chitosan (CS) as a natural polymer through physical and chemical crosslinking for the proliferation and differentiation of the human dental pulp stem cells (hDPSCs) to the osteoblasts. The PNIPAAm copolymer/GO composite was synthesized by free-radical copolymerization of (N-isopropylacrylamide) (NIPAAm), itaconic acid (IA) and maleic anhydride-modified poly(ethylene glycol) (PEG) in the presence of GO and used for the preparation of the hydrogels. The formulated hydrogels were evaluated for the porous architecture, rheological behavior, compressive strength, swelling property, in vitro degradation, hemocompatibility, biocompatibility, and differentiation. The hydrogel could enhance the deposition of minerals and the activity of alkaline phosphatase (ALP), in large part attributable to the oxygen and amine-containing functional groups of GO and CS. The engineered hydrogel could also upregulate the expression of the Runt-related transcription factor 2 and osteocalcin in the hDPSCs cultivated in both the normal and osteogenic media. It seems to promote the absorption of osteogenic inducer too. Based on our findings, the engineered hydrogel demonstrated the osteogenic potential, upon which it is proposed as a constructing scaffold in bone tissue engineering for the transplantation of hDPSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.